Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 56: e12566, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447686

ABSTRACT

Plastination is a technique used to preserve biological tissues while retaining most of their original appearance. In the technique, developed by Dr. Gunther von Hagens in 1977, specimens were impregnated with a polymer, such as silicone, epoxy, or polyester. Considered the most suitable material for brain plastination, polyester has a wide application in teaching and research compared with imaging techniques. The materials for plastination are usually imported from Germany and more expensive than domestic products. If domestic polymers were to enter the market it would favor the expansion of plastination in Brazil. Hence, this study evaluated the feasibility of using domestic polyesters to replace the usual Biodur® (P40) in plastination of brain slices. For this evaluation, 2-mm-thick sections of bovine brains were prepared and plastinated with domestic polyester. Slices were compared before impregnation and after curing using standardized photographs taken after dehydration and after curing. Plastination followed the standard protocol: fixation, dehydration, forced impregnation, and curing. Fifteen brain slices were plastinated with each polyester (P40, P18, and C1-3). There was no significant difference in the percent shrinkage between groups after plastination of P18 and P40, but the curing time of Cristalan© polymer was too short for impregnation. Therefore, no initiator was used for C polymers impregnation. Thus, domestic polyester P18 was a viable option for the process.

2.
Braz. j. med. biol. res ; 55: e11962, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1384142

ABSTRACT

Plastination is an anatomical technique for preserving biological tissues based on the principle of replacing body fluids with a curable polymer. An inconvenient aspect of this technique is the tissue shrinkage it causes; several studies seek ways to reduce or avoid this shrinkage. Additionally, there are no studies in the literature that quantitatively evaluate the use of low viscosity silicones in plastination having shrinkage of tissue as a parameter. Therefore, this study aimed to evaluate the use of Silicones S10 (Biodur) and P1 (Polisil) in the plastination of different types of biological tissues of a sliced human body, having as a parameter the tissue shrinkage caused in the forced impregnation stage. Human cardiac, pulmonary, splenic, renal, hepatic, muscular, and bone tissues were analyzed. For such purpose, a male human body was used, sliced in 13-15-mm-thick pieces, having as a parameter the before and the after plastination with the different silicones. The standard protocol of the plastination of the slices was followed: dehydration, forced impregnation, and curation. Half of the pieces obtained were plastinated with silicone P1 (group P1) and the other half with S10 (group S10). All tissues and anatomical segments analyzed in this study showed less or equal shrinkage when plastination of the control group (S10) was compared with that of the P1 group. Therefore, we concluded that the lower viscosity silicone promoted less tissue shrinkage, making it a viable alternative to the reference.

SELECTION OF CITATIONS
SEARCH DETAIL